49 research outputs found

    New Wave of Component Reuse with Spring Framework - AP Case Study

    Get PDF
    The myth of component reuse has always been the “holy grail” of software engineering. The motivation var-ies from less time, effort and money expenditure to higher system quality and reliability which is especially impor-tant in the domain of high energy physics and accelerator controls. Identified as an issue by D. McIlroy in 1968 [1], it has been generally addressed in many ways with vari-ous success rates. But only recently with the advent of fresh ideas like the Spring Framework with its powerful yet simple “Inversion of Control” paradigm the solution to the problem has started to be surprisingly uncompli-cated. Gathered over years of experience this document explains best practices and lessons learned applied at CERN for the design of the operational software used to control the accelerator complex and focuses on features of the Spring Framework that render the component reuse achievable in practice. It also provides real life use cases of mission-critical control systems developed by the Ap-plication Section like the LHC Software Architecture (LSA), the Injector Control Architecture (InCA) or the Software Interlock System (SIS) that have built their own success mostly upon a stack of reusable software components

    Status and Recent Developments of the Analog Signal Observation System at CERN PS

    Get PDF
    The nAos (new Analog observation system) at CERN's PS complex allows visualization of some 1500 analog signals in any of the workstations connected to the controls network. Signals are digitized close to their source using VXI oscilloscope modules and sent to the users via Ethernet. A sophisticated application program conveys the signal selection and settings to the VXI front-ends and displays all the requested signals in one virtual oscilloscope window. The trigger pulses for the VXI oscilloscope modules are produced centrally near the Main Control Room of the PS and sent to the VXI crates oscilloscopes through long dedicated copper cables. To get to a sharper time definition, a new trigger production method has been tested with successful results. Timing events, encoded with an ultra-stable 10 MHz clock are sent as 32-bit messages through an optical fiber and converted locally into trigger pulses. The precision achieved with this method is better than 1 ns. The paper describes the current system, presents its performances in operation and details the recent development on the trigger generation

    An Integration Testing Facility for the CERN Accelerator Controls System

    Get PDF
    A major effort has been invested in the design, development, and deployment of the LHC Control System. This large control system is made up of a set of core components and dependencies, which although tested individually, are often not able to be tested together on a system capable of representing the complete control system environment, including hardware. Furthermore this control system is being adapted and applied to CERN's whole accelerator complex, and in particular for the forthcoming renovation of the PS accelerators. To ensure quality is maintained as the system evolves, and toimprove defect prevention, the Controls Group launched a project to provide a dedicated facility for continuous, automated, integration testing of its core components to incorporate into its production process. We describe the project, initial lessons from its application, status, and future directions

    Automatic conditioning of the CTF3 RF system

    Get PDF
    The RF system of CTF3 (CLIC Test Facility 3) includes ten 35 MW to 40 MW 3 GHz klystrons and one 20 MW 1.5 GHz klystron. High power RF conditioning of the waveguide network and cavities connected to each klystron can be extremely time consuming. Because of this, a fully automatic conditioning system has been developed within a CERN JINR (Dubna) collaboration. It involves relatively minor hardware additions, most of the work being in application and front-end software. The system has already been used very successfully

    CERN Proton Synchrotron Complex High-Level Controls Renovation

    Get PDF
    After a detailed study of the Proton Synchrotron (PS) complex requirements by experts of CERN controls & operation groups, a proposal to develop a new system, called Injector Controls Architecture (InCA), was presented to and accepted by the management late 2007. Aiming at the homogenisation of the control systems across CERN accelerators, InCA is based on components developed for the Large Hadron Collider (LHC) but also new components required to fulfil operation needs. In 2008, the project was in its elaboration phase and we successfully validated its architecture and critical use-cases during several machine development sessions. After description of the architecture put in place and the components used, this paper describes the planning approach taken combining iterative development phases with deployment in operation for validation sessions

    The EarthCARE mission – science and system overview

    Get PDF
    The Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) is a satellite mission implemented by the European Space Agency (ESA), in cooperation with the Japan Aerospace Exploration Agency (JAXA), to measure global profiles of aerosols, clouds and precipitation properties together with radiative fluxes and derived heating rates. The simultaneous measurements of the vertical structure and horizontal distribution of cloud and aerosol fields, together with outgoing radiation, will be used in particular to evaluate their representation in weather forecasting and climate models and to improve our understanding of cloud and aerosol radiative impact and feedback mechanisms. To achieve the objective, the goal is that a retrieved scene with footprint size of 10 km × 10 km is measured with sufficiently high resolution that the atmospheric vertical profile of short-wave (solar) and long-wave (thermal) flux can be reconstructed with an accuracy of 10 W m−2 at the top of the atmosphere. To optimise the performance of the two active instruments, the platform will fly at a relatively low altitude of 393 km, with an equatorial revisit time of 25 d. The scientific payload consists of four instruments: an atmospheric lidar, a cloud-profiling radar with Doppler capability, a multi-spectral imager and a broadband radiometer. Co-located measurements from these instruments are processed in the ground segment, which produces and distributes a wide range of science data products. As well as the Level 1 (L1) product of each instrument, a large number of multiple-instrument L2 products have been developed, in both Europe and Japan, benefiting from the data synergy. An end-to-end simulator and several test scenes have been developed that simulate EarthCARE observations and provide a development and test environment for L1 and L2 processors. Within this paper the EarthCARE observational requirements are addressed. An overview is given of the space segment with a detailed description of the four science instruments, demonstrating how the observational requirements will be met. Furthermore, the elements of the space segment and ground segment that are relevant for science data users are described and the data products are introduced.</p

    CTF3 Design Report: Preliminary Phase

    Get PDF
    The design of CLIC is based on a two-beam scheme, where the short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP. In the first stage of the project, the "Preliminary Phase", the existing LIL linac and the EPA ring, both modified to suit the new requirements, are used to investigate the technique of frequency multiplication by means of interleaving bunches from subsequent trains. This report describes the design of this phase

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    corecore